

Re: [scr1101806] in-path attacks against VPNs

From <cve-request@mitre.org>
To <william@breakpointingbad.com>
Cc <cve-request@mitre.org>
Date 2021-07-05 14:22

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA256

Thank you for contacting us. We realize that you have completed important work about previously unpublished threats that affect a significant fraction of all VPN users. Our current thoughts are:

1. CVE-2019-14899 should not have been assigned. It is not valid to have a CVE ID that is supposed to apply to a collection of independently developed code that happens to be susceptible to the same attack methodologies. For further information, please see <https://cve.mitre.org/cve/cna/rules.html> section 7.2.4b.

2. To obtain a CVE ID, you would need to identify a single affected codebase, and indicate what portion of the code has an implementation mistake (accompanied, if possible, by the agreement of the software maintainer on how the code has been, or could be, patched).

It looks like you might be able to do this for WireGuard, but we are not certain of that. In your <https://www.usenix.org/system/files/sec21fall-tolley.pdf> document, statements such as

"There is no operating system implementation detail, VPN design decision, or configuration setting that we can point to as being the vulnerability that enables our server-side attacks."

and

"Our server-side attacks are not associated with any vulnerability; instead, they only assume that the VPN server correctly performs network address translation."

and

"For server-side attacks there is not a concept of a vulnerable VPN technology or OS, because the attack takes advantage of NAT when working as specified."

suggest that a CVE ID is not applicable to any of the findings related to server-side attacks. CVE IDs are assigned to software mistakes; they are not assigned to attack methodologies.

3. More generally, we do not assign CVE IDs to research that is ultimately a suggestion for a design improvement. Otherwise we would, for example, enumerate every possible design improvement in Tor, such as on the <https://www.torproject.org/docs/faq.html.en#AnonymityAndSecurity> page, and assign CVE IDs to them.

We do understand that there is an important distinction between your research and the various research into attacks against Tor. VPNs are more widely used than Tor, and some readers legitimately feel that your research implies a conclusion of "the level of data security provided by a VPN is often much worse than what the user is expecting." Unfortunately, decisions about CVE ID assignment cannot be influenced by an assessment of the importance of the research itself.

[Suggested description]
A vulnerability affecting Linux, FreeBSD, OpenBSD, macOS, iOS, Android, and Windows that allows an in-path router to infer and hijack TCP connections and DNS queries that are tunneled through OpenVPN, WireGuard, or StrongSwan.

[Additional Information]
Artifact included with Usenix paper submission which contains demos, PCAPs, and a virtual environment to test the vulnerability:
<https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks>

[VulnerabilityType Other]
CWE-300: Channel Accessible by Non-Endpoint

[Vendor of Product]
OpenVPN, WireGuard, StrongSwan, Linux

[Affected Product Code Base]
OpenVPN, WireGuard, StrongSwan, Linux - All

[Attack Type]
Remote

[Impact Code execution]
true

[Impact Denial of Service]
true

[Impact Information Disclosure]
true

[Attack Vectors]
Any in-path router between the VPN client and VPN server sends packets to the VPN server spoofed from end-point (website or server the VPN user is connected to)

[Reference]
<https://www.usenix.org/system/files/sec21fall-tolley.pdf>
<https://seclists.org/oss-sec/2020/q3/116>
<https://breakpointingbad.com/2020/08/12/VPN-FAQ.html>

[Has vendor confirmed or acknowledged the vulnerability?]
true

[Discoverer]
Breakpointing Bad - William J. Tolley, Beau Kujath, and Jeddiah R. Crandall

--
CVE Assignment Team
M/S M300, 202 Burlington Road, Bedford, MA 01730 USA
[A PGP key is available for encrypted communications at
https://cve.mitre.org/cve/request_id.html]
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQIcBAEBCAAGBQJg400vAAoJEPNX00mQPkAIzsMP/jpu/mVZ1GSNSDhZ37o8o8Gq
NztMrISYfBS9gKz1a5nE06kROV1hvrJXzCYiKJ1H4VmSJx806yjmouuw/3dMmQu
kXzKvbZw5wAFeRQp4MD+GMcfIN2+jdG8zf819V8ihcZVNBJsJmUTw6f9zeHDgCRk
GjEBMv51HU+S6k1UvxaprTU6Jx4uE0DWqebHxxhIKW/xYz4Ijh4TxJGL2zI02Y8b
d0jLyk2dtq5Hssv0b13FrZjDe4zAny29akDAb3a0HY9BETXWd8gXmm2r/ZQ8ysbh
ukrp0Tvw0rA5uR0OzeWujiQuXWR8rUKHH31UdAG24QqDA7EJTQKmATm1M7Xc503n
G4ISyZH8jDwxL1WZPux+/ImUqFGoF/Gbvd5T9emiM5xw/encyM+ZM1CBgI0pb17L9
KdSUWfiUd5gLsyvqvttd5TWZdbJFyHztSAG9GzCMKTR7g1/kuMYJ0kBwiQqu7nF
o0Hfsi3zof2P9/UzMWVZw0TfkjRf9Ff6P5QyMaFiVT8gp1zs/DtbUJstWi7W/M1d
fwnwHmUqKdz1DmBN82UdoY/CaYX737jHBe10Eu/cVBmWbQz4usMCFNLMm/M1v4TM
JmnmiUv9cKbWwBakgGDJs2EPEpDVzPbgv6kBFOQw5XCIgYp9bJHSMs3iQmOShsMdp
Yah+Nv8lfofMRmihwl6v
=a+wX
-----END PGP SIGNATURE-----